Support Vector Machines for Class Imbalance Rail Data Classification with Bootstrapping-Based Over-Sampling and Under-Sampling

نویسنده

  • Ali Zughrat
چکیده

Support Vector Machines (SVMs) is a popular machine learning technique, which has proven to be very effective in solving many classical problems with balanced data sets in various application areas. However, this technique is also said to perform poorly when it is applied to the problem of learning from heavily imbalanced data sets where the majority classes significantly outnumber the minority classes. In this paper, we tackle the problem of learning from severely imbalanced Rail dataset via a new iterative support vector machine algorithm with bootstrapping-based over-sampling and under-sampling. We combine the good generalization ability of SVMs with the class distribution advantages of resampling techniques. Under-sampling and Over-sampling are commonly used methods for overcoming the class imbalance problem. In this work, we also address the influence of under-sampling and oversampling techniques on rail data and show that achieving an optimal sampling rate yields a better SVM generalization capability. Experimental results show that the under-sampling outperforms over-sampling. The iterative SVM technique also shows a competitive generalization performance on the under-sampled rail data set, and that under-sampling can decrease the computational complexity of SVM algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Selective Sampling Method for Imbalanced Data Learning on Support Vector Machines

The class imbalance problem in classification has been recognized as a significant research problem in recent years and a number of methods have been introduced to improve classification results. Rebalancing class distributions (such as over-sampling or under-sampling of learning datasets) has been popular due to its ease of implementation and relatively good performance. For the Support Vector...

متن کامل

Learning from imbalanced data in surveillance of nosocomial infection

OBJECTIVE An important problem that arises in hospitals is the monitoring and detection of nosocomial or hospital acquired infections (NIs). This paper describes a retrospective analysis of a prevalence survey of NIs done in the Geneva University Hospital. Our goal is to identify patients with one or more NIs on the basis of clinical and other data collected during the survey. METHODS AND MAT...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Modeling The Stable Operating Envelope For Partially Stable Combustion Engines Using Class Imbalance Learning

Advanced combustion technologies such as homogeneous charge compression ignition (HCCI) engines have a narrow stable operating region defined by complex control strategies such as exhaust gas recirculation (EGR) and variable valve timing among others. For such systems, it is important to identify the operating envelope or the boundary of stable operation for diagnostics and control purposes. Ob...

متن کامل

CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014